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ABSTRACT 

The study of coding for constant-data-rate systems, begun in Part I, is 
extended by considering the use of multiple-error-correcting codes. The 
principle of the Wagner code is u6edto construct two new multiple-error- 
correcting codes, the Hamming-Wagner code and the syllabified Wagner 
code. The performances of these codes, and of the Reed code (a multiple- 
error-correcting code not of the Wagner type) are compared. Of the 
three Wagner-type codes, the ordinary Wagner code is best for short 
words, the Hamming-Wagner for medium length and long words, and 
the syllabified Wagner for very long words. The Reed three-error- 
correcting code (as yet only applicable to a few isolated values of word 
length) outperforms both the Hamming-Wagner and syllabified Wagner 
codes. 
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CODING FOR CONSTANT-DATA-RATE SYSTEMS 
II.    MULTIPLE-ERROR-CORRECTING CODES 

A.     INTRODUCTION 

In Part I of this paper    we introduced the Wagner code, a new means of correcting 

single errors in sequences of binary digits.    (We call such sequences words.)   It differs from 

the Hamming code   by being likely rather than certain to correct single errors.    However,  it 

uses only one check digit, whereas the Hamming code uses several (the number depending on the 

number of message digits).    In communication systems with a fixed word length (constant-data- 

rate) the economy of the Wagner code in the use of check digits can offset the disadvantage of not 

correcting all single errors.    We found that for such systems short Wagner-coded words have 

much smaller probabilities of error than the corresponding Hamming-coded words. 

We now consider the performance of multiple-error-correcting codes in constant- 

data-rate systems.    Again we have codes like Hamming's, which correct errors by using alge- 

braic relations between received message and check digits, and codes like Wagner's, which 

require stored a posteriori probabilities suitably computed by the receiver, as well as the 

received word.     (Some may object to the word "code" as applied to the Wagner scheme, since 

information other than the received word is required.    However, we feel that the phrase "Wagner 

code" is justified by its linguistic convenience.)   There are also "mixed" codes, which correct 

some errors by using only algebraic relations between the received digits, and other errors by 

using the Wagner scheme.    The Hamming-Wagner code described in Sec.B is such a "mixed" 

code.    We also examine a syllabified Wagner code,  in which each word is split up into separately 

Wagner-coded subwords, and the class of multiple-error-correcting codes recently developed 

by I. S. Reed and others.     Our conclusions are summarized in Sec.E. 

B.  THE HAMMING-WAGNER CODE 

We consider systems such that each digit (one of two electrical signals, x. (t) and 

x,(t) of duration T and bandwidth W, TW » 1) is corrupted in the channel by the addition of 

white Gaussian noise.    If y(t) is the received signal, x} (t) or x2 (t) is chosen as the transmitted 

signal according as 

•1 =   f     xl Jo 
(t)y(t)dt (i) 

or 

Jo 
(t)y(t)dt (2) 

is the larger.   It was shown in Part I, with which familiarity is assumed, that the correlations 

z. and z, are monotone functions of the a posteriori probabilities p(x./y) and p(x,/y).      Moreover, 

they are more convenient quantities for calculation, since for suitable x. and x,, they are 

*Th« reader is reminded that the shorter a digit, the greater Its probability of error. 

**Th« o posteriori probability that if y Is received, x wot tent, is denoted by p(x/y). 
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independent Gaussian random variables, with means c. and c?(ci > c>)« and standard deviations 

v. and «•,. 

The Wagner code (analyzed in Part I) operates as follows:   the values of z. and z, 

corresponding to each digit of a received word are stored in a memory for the duration of the 

word.   The last digit of each transmitted word was chosen to make the sum of all the digits even 

(parity check).    The sum of all the tentatively identified digits will be odd if the received word 

differs from the corresponding transmitted word in an odd number of digits.    However, whenever 

the sum is odd, the receiver assumes that the error is in only on • digit, and alters the digit for 

which the stored correlations differ by the smallest amount.   We found that the probability of 

error per Wagner-coded word of m message digits is 

Pw=l-q
m+1(a)-nm+1(a) (1-29) 

where 

and 

Cl~cZ 

*h(° j2  + ' }) 
(3) 

P(«) =   >(1 -erf a) 

q(a) = i(l +erf a) 

d-7) 

(1-14) 

The quantity I]   (a) is the multiple integral 

nn<°>=  HZ"*  HexP[-(xn-a)2]dxn   P1 exp [- (xn_ , -a)2]dxn_ , .. 
(s/Tf)   Jo Jo 

fX3exp[-(x2-a)ZJdx2  f5 

Jo Jo 
2 exp[-(Xj + o)2)dXj 

which can be reduced by repeated integration by parts to the recurrence relation 

n
nW!2Cl>D».|C>-iC>nn.Z<4) + t^<2>n

2<°> 

(1-12) 

•   b^(")[Il(a)-In(a)]       , (1-22) 

where 

I_(a) = 1=  f°° [erf (x - a)]"'1 exp[- (x * a)2Jdx 
' Vtr Jo 

(1-23) 

'Equation numbers preceded by the Roman numeral I refer to correspondingly numbered equation* In Part I.' 
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It is shown in Appendix B that Eq. (1-22) can be reduced to the sum 

"„<•>•$,?, CfK-i)'*1 !,(•> ,..,. 
(4) 

.1 All the terms of Eq. (4) are positive for values of a in the range of interest    (a =  1.0 to 3.0, say), 

so that Eq. (4) is much more suited for numerical work than Eq. (1-22) when n is large. 

We no* extend the principle of the Wagner code to a double-error-correcting -code. 

The following procedure appears best as a first attempt.    Further check digits are added to the 

Wagner-coded word; these reveal double as well as single errors.  If a double error is detected, 

we change the two digits of the stored word with the smallest correlator differences.    If a single 

error is detected, we change only the smallest correlator difference. 

The success of this scheme requires a system of check digits which indicates both 

single and double errors,  and further allows them to be distinguished.    The geometrical model 

of message space (see Appendix A) is well suited for examining the possibility of setting up such 

check digits.    Referring to Fig. 1, we see that if both single and double errors in possible trans- 

mitted points (such as P. and P.) are to be de- 

tectable, and if single errors are to be distin- 

guishable from double errors, every such pair 

of points must be separated by a distance of 4 

or more.    For then, a single error in P.   sends 

s, 
-O- 

D 
-O- 

s, 
-o- 

Fig. 1.   Configuration of points in massage spec* 
between two possible transmitted messages Pj and Pj. 

it to a neighboring point like S. , where it can be stated with certainty to have come either from 

P.   by a change in one digit, or from some other possible transmitted message by a change in 

three or more digits.    Similarly, a single error in P, sends it to a neighbor like S,.    On the 

other hand,  a double error in either P. or P, may correspond to a received point like D, at a 

distance of 2 from both.    Unless there are at least three points between all pairs of possible 

transmitted points,  a double error in P. (say) is indistinguishable from a single error in P, (or 

some other transmitted point),  so that we do not know whether to correct one or two digits in the 

received word. 

Now in a Hamming single-error-correcting, double-error-detecting code, aii trans- 

mitted messages are separated by at least a distance of 4 (see Appendix A).    This is just the 

separation required for successful operation of a Wagner code that corrects both single and 

double errors.    Thus the number o£ check digits needed to correct all single errors before apply- 

ing the Wagner procedure to double errors is the same as the number required to apply the 

Wagner procedure to both single and double errors.    This suggests a "Hamming-Wagner" code 

of the "mixed" type mentioned in Sec. A, which is obviously better than the corresponding 
"Wagner-Wagner" code. 

We thus arrive at a code that is like the Hamming single-error-correcting, double- 

error-detecting code, except that if the extra check digit indicates a double error, we change 

the two digits with the smallest correlator differences.    The analysis of this Hamming-Wagner 

*lt It inevitable mat tame higher-order errors will be mistaken for double errorj and will remain uncorrected 
after applying the Wagner procedure.   However, this is no worse than leaving them uncorrected in the first 
place.   (See Appendix A.) 
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code is completely analogous to that of the simple Wagner code. 

The probability of error per Hamming-Wagner-coded word is 

HW 
= 1 - qm+k+l (B) _ (m + k + 1} qm+k (a) p (a) _ 

2nm+k+i (o) (5) 

where a,  p (o), and q (o) have already been defined.    The quantity k is the number of check digits 

required by the Hamming single-error-correcting code.    The quantity    n    (a) (in analogy to 

Eq. (1-12)] is the multiple integral 

2nn(a)=  ^j  J~o\xP[-(xn-a)2ldxn J^expf-Ov^a)2^.!... 

I       expt- (x3-o)  ]dx3    I       exp[- (x2 + a)  )dx2   I       exp[-(Xj + a)  ]dx. 
Jo Jo Jo 

Repeated integration by parts reduces Eq. (6) to the recurrence relation 

(6) 

1  . n , 2, 1    ,  n , 2. *n„ w = i <„-V nn.,(») - ± („;2) -nn.2(«) 

+ ii& ft %• + L^ (")t2I2<») " \fH      • 
where 

2I_(a)=-2=     f    [erf (x-a)]n~2 exp [-(x + a)2][erf (x + a)-erf a]dx 
Vi  Jo 

Equation (7) can be further reduced to the sum 

n 

i=2 
2nn(a)=  Hi^   S    (n;2)(-i)

i2li(a) 

(7) 

(8) 

(9) 

in complete analogy to Eq. (4).    (See Appendix B.) 

P•(1.35) and PHW(1.80) are tabulated in Table I for various values of m, together 

with the corresponding probabilities of error for uncoded, Hamming-coded, and Wagner-coded 

words.    The values of a used in computing P..,  P„,  and Pw are chosen so that all words (message 

digits plus check digits) have the same duration, as required in a constant-data-rate system. 

Thus 

PIT (•».)=  !-<!     K.) lul"u u' 
/m + k + 1 

aU = J m  

PH(aH)=l-q (aH)-(m + k)q («„) p (aH)   .    ^ = J     m +k 

*        /m *k • 1 
V    V     m • 1 

.m+1 
Pw(aw)-l-q'"   *(V  nm+l(V 

(10) 

(") 

(12) 

*Form »5to 11, k = 4j for m = 12 to 26, k =5; etc.2 
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TABLE I 

COMPARISON OF HAMMING. WAGNER. AND HAMMING-WAGNER CODES 

(a)   o> =  1.35 

m pu PH PW 
p 
*HW 

10 0.093 0.044 0.030 0.037 
11 0.111 0.050 0.038 0.043 
12 0.110 0.065 0.038 0.057 
13 0.128 0.073 0.047 0.064 
14 0.146 0.081 0.056 0.071 
IS 0.165 0.090 0.067 0.079 
16 0.183 0.098 0.079 0.087 
17 0.202 0.107 0.092 0.096 
18 0.220 0.116 0.105 0.104 
19 0.239 0.126 0.119 0.113 
20 0.257 0.135 0.134 0.122 
21 0.275 0.145 0.149 0.132 

(b)   a = 1.80 

m PU PH PW PHW 

10 0.0091 0.0016 0.00067 0.00063 
11 0.0117 0.0018 0.00095 0.00076 
12 0.0109 0.0025 0.00081 0.00107 
13 0.0135 0.0029 0.00111 0.00124 
14 0.0163 0.0033 0.0015 0.0014 
15 0.0193 0.0037 0.0019 0.0016 
16 0.0224 0.0042 0.0024 0.0019 
17 0.0258 0.0046 0.0030 0.0021 
18 0.0292 0.0051 0.0037 0.0024 
19 0.0328 0.0057 0.0044 0.0026 
20 0.0364 0.0062 0.0052 0.0029 
21 0.0401 0.0068 0.0061 0.0032 
22 0.0439 0.0074 0.0070 0.0036 
23 0.0478 0.0080 0.0080 0.0039 
24 0.0518 0.0086 0.0091 0.0043 

Values of a are for the Hamming-Wagner code 
m = number of m ssage digits 
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Table I shows that for a = 1.35, a very noisy case, the Hamming code becomes better 

than the Wagner code at m = 21.    For a = 1.80, which corresponds to much less noise, the 

Hamming code surpasses the Wagner code at m = 24.    Thus it appears that, starting with some 

value of m between 25 and 30, the Hamming code is better than the Wagner code anywhere in the 

significant range of a (neither too little nor too much noise ).    This happens for the reasons given 

in Part I:  — (1) the ratio k/rn decreases with increasing m, so that corresponding values of a for 

the two codes become more nearly alike, dissipating the advantage of the Wagner code's economy 

in the use of check digits, and (2) the conditional probability that the Wagner code corrects single 

errors decreases as m increases. 

We see from the table that the Hamming-Wagner code is consistently better than the 

Hamming code; however, the percentage improvement is greater for a = 1.80 than for the noisier 

case a = 1.35.    For a =  1.35, the Hamming-Wagner code is better than the Wagner code for all 

m > 17; for a = 1.80, the Hamming-Wagner code is better than the Wagner code for all m > 13. 

Thus, while the Wagner code is superior to the Hamming code for words of length less than about 

20,     the Hamming-Wagner code is superior to either of these codes for words of length greater 

than about 15.      The Hamming-Wagner code works better in low noise than in high noise, because 
(1) proportionately fewer multiple errors are of order higher than two, and (2) the conditional 

probability of correcting double errors is higher.    Since this conditional probability decreases 

as m increases, the Hamming-Wagner code gradually becomes less effective, as shown in the 

next section. 

C.     THE SYLLABIFIED WAGNER CODE 

Another multiple-error-correcting code based on the principle of the Wagner code is 

the syllabified Wagner code, constructed by dividing each word into separately Wagner-coded 

subwords or syllables.    Suppose a word with m message digits is divided into j syllables, each 

containing n. = m. + 1 digits, where 

1 
m =  2    m. 

i=l      l 

Since the probability that a syllable (regarded as a Wagner-coded word) is correct is 

q V) +   nn  (a)       , 
i 

the probability of error for a syllabified-Wagner-coded word is 

rSW (m., m,,  . . . . m.) = 1 -   h    [q l(a) +   II    (a)]      ,       I    m. = m (13) 
J i=i ni i=l      1 

*Th* Hamming-Wogn*r cod* Is alto better for m =10 and 11.   Thit anomaly if due to the change in k from 4 to 
5atm= 12. 

**A comparison of th* Hamming and Wagner code* in the rang* m = 4 to 8 is giv*n In Part I. 

tTh* valu* of m for which on* cod* becomes better than another Is some what dependant on a.   (See Tobl* I.) 

UNCLASSIFIED 



UNCLASSIFIED 

It follows at once that for a given number of syllables Pg^f1*1!'  m2'  • • •'  mt) is smallest when 

the syllables have equal length (or as nearly equal as possible).   For if we write Eq. (13) as 

pSW(nV m2' «,) 
j-1 j-1 

1 - f (m -   2    m.)    n    f (m.) 
1=1      *    i=l l 

(14) 

where 

f (m.) = q *<») +   Iln (a) 
i 

(15) 

we obtain after differentiating Eq. (14) with respect to m.  and equating the result to zero 

j-1 

Consequently, 

f' (mk) 
f(mk) 

ffm,) 

V (m- E   m.) 
 i=l      * 

j-1 
f (m- 2    m.) 

i=l      1 

1.  2, J - (16) 

f'(m2) 

flm^T 
f (m ) 
"Mm} (17) 

so that Psw(m j. m^ m.) is smallest when all the f (m.) are equal,  i.e., when all the sylla- 
bles are of equal length (or as nearly equal as possible). 

If too few syllables are used, the conditional probability of correction of single errors 

per syllable is small because the syllables are too long.    If too many syllables are used, this 

conditional probability is small because the large number of check digits leads to a small value 

of o.    (This second effect is partially compensated by increased multiple-error-correction pos- 

sibilities.)   The optimum number of syllables is a compromise between these two effects.    This 

optimum number is not necessarily critical, or for that matter the same for all a.    The simple 

Wagner code (which may be considered a syllabified Wagner code of one syllable) is clearly best 

for short words.    At about m = 14, division into two syllables is better than the simple Wagner 

code.    Atm= 30, divisions into three and four syllables are about equally effective, and better 

than divisions into more or fewer syllables.    A syllable length of seven to ten digits seems to be 
best. 

All these points are illustrated in Table II, which compares PHW and P_w for several 

values of m and a„w = 1.80.    The table also shows how the syllabified Wagner code finally sur- 

passes the Hamming-Wagner code at about m • 80.    As previously mentioned, this is due to the 

decrease in CHW, the conditional probability that the Hamming-Wagner code corrects double 

errors,  as m increases.    This decrease in CHW is also shown in Table II.    The formulas used 

for calculating the P's are the same as those in Eqs. (10),  (12), and (13) with the a's related by 

Vm + 
  

k + 1  . / m + k + 1 
v     m +  1 -J m + k + 1 

m -HW   '   "W * V     m +  1      "HW   '    "SW " V      m + j       QHW (18) 

where m is the number of message digits,  k the number of check digits, and j the number of 
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TABLE II 

COMPARISON OF THE HAMMING -WAGNER AND SYLLABIFIED WAGNER CODES 

°HW= ! .80 

m PHW CHW i PSW 

12 0.00107 0.77 1 
2 

0.0081 
0.0087 

14 0.00143 0.75 1 
2 

0.00148 
0.00144 

16 0.00186 0.73 2 0.00228 

18 0.00236 0.72 2 
3 

0.00322 
0.00342 

20 0.00292 0.70 2 
3 

0.00438 
0.00449 

22 0.00356 0.68 2 
3 

0.00577 
0.00570 

24 0.00426 0.67 3 
4 

0.00700 
0.00735 

30 0.00730 0.62 3 
4 
5 

0.00981 
0.00975 
0.01006 

42 0.0146 0.55 5 
6 

0.0200 
0.0201 

54 0.0244 0.50 6 
7 

0.0318 
0.0317 

72 0.0448 0.43 8 0.0468 
90 0.0688 0.38 10 0.0659 

j = number of syllables 

syllables.    The quantity CHW (a) is given by 

CHW(a) = 
2*Iln<a) 

n (n-1) qn~   (a) p   (a) 
n = m + k + 1 (19) 

D.     THE REED CODE 

We now examine the performance in a constant-data-rate system of the Reed code, 

the only known example of a systematic multiple-error-correcting code.    First we describe the 

code briefly. 

The Reed code is applicable only when the total number of digits in a word is a power 

of 2.    Corresponding to each possible word length, there are only certain possible values of the 

order to which errors may be corrected.    For each of these possible values, the number of mes- 

sage digits is determined.    This feature limits the application of the code in communication sys- 

tems, for the number of message digits <n a word (fixed by other considerations) may not 
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correspond to a possible choice in a Reed code.    Table III shows the relations between the number 

of message digits, the distance between possible transmitted messages (see Appendix A), and the 

order of errors corrected and detected for Reed-coded words of 2V digits. 

As indicated in Table III, the Reed code not only corrects all errors up to a given 

order,  but also detects errors of that order plus one.    This feature is not an advantage in our 

case, since there is no indication of the correct replacement for the detected mistaken word.    In 

some cases the Reed code corrects errors of order higher than indicated in Table III,   but no 

TABLE III 

CHARACTERISTICS OF THE REED CODE 

Words of 2V digits 

Number of message 
digits 

Distance between 
possible messages 

transmitted 

Order to which 
errors are 
corrected 

Order of 
detected 
errors 

1   + V 
1 + v • ?z) 2""2 

2"-2-l 

2""3-l 

2-2 

2-3 

1 + v • (p + ... + (J) 2V"J 2V"J-J - 1 2v-H 

2V - 1 2 0 1 

2V 1 0 0 

analysis of this phenomenon has been made.    It follows that the probabilities of error for Reed- 

coded words calculated below are only upper bounds, albeit probably good ones because of the 

high order of the extra corrected errors. 

Table IV gives a few of the numbers corresponding to the formulas of Table in.    The 

lack of flexibility in the simultaneous choices of number of message digits and order of errors 
corrected can be seen at once. 

The encoded message is obtained by multiplying the message digits by certain stand- 

ard sequences of n = 2V digits, and then adding the products modulo 2.    Decoding is accomplished 

by choosing that digit given by the majority of a set of sums (again modulo 2), a given standard 

set corresponding to each message digit.    Complete details are to be found in Reed's paper. 

Tables HI and IV give enough information on the number of check digits, the order of 

errors corrected, etc.  to study the performance of the Reed code in a constant-data-rate system. 

Table V shows corresponding probabilities of error per word for a Reed three-error-correcting 

code, the Hamming single-error-correcting code, and no code at all.    The formulas for R. and 

P„ are the same as those given in Eqs. (10) and (11): the probability PR is given by 

v-,i(T") m+k_-i , 
(20) 
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TABLE IV 

NUMERICAL EXAMPLES OF THE REED AND HAMMING CODES 

n m kR kH 
Order to which 

errors are corrected 

8 4 4 3 1 

16 5 11 4 3 

16 11 5 4 1 

32 6 26 4 7 

32 16 16 5 3 

32 26 6 5 1 

64 7 57 4 15 

64 22 42 5 7 

64 42 ZZ 6 3 

64 57 7 6 1 

128 99 27 7 3 

256 219 37 8 3 

TABLE V 

PROBABILITIES OF ERROR FOR UNCODED,  HAMMING-CODED. 

AND REED-CODED WORDS 

m °H PU PH PR 

16 1.5 0.114 0.049 0.047 

16 2.0 0.00953 0.00112 0.00042 

42 1.5 0.389 0.195 0.163 
42 2.0 0.0512 0.0057 0.0011 

99 1.5 0.754 0.538 0.449 

99 2.0 0.1558 0.0259 0.0041 

219 1.5 0.967 0.899 0.839 
219 2.0 0.354 0.100 0.018 

*        i 

10 

UNCLASSIFIED 
\ 



UNCLASSIFIED 

where kR is the number of Reed check digits; lu. is the number of Hamming check digits 
required for m message digits (see Table IV).    The relations required to find the a's used in 
Table V are 

/m + kH 
lv * 7 —ST- *H    . 

/m+ kH 
lR " -J m + k_ *H (21) 

We see from Table V that the Reed code outperforms the Hamming code, even for 
m = 16.    Thus the decrease in a produced by the extra check digits of the Reed code is more than 
compensated by the ability to correct all double and triple errors.   The advantage is more marked 
for larger a, since in high noise many more errors of order greater than three are introduced 
by the shortening of the digit length. 

In Table VI, the Reed code is compared at three of its allowed values of m with the 
best of the Wagner codes.    The probability of error for uncoded words is given for reference. 

TABLE VI 

COMPARISON OF REED CODE WITH HAMMING 

AND SYLLABIFIED WAGNER CODES 

-WAGNER 

m °HW 
pu p rHW PR 

16 

42 

1.80 

1.80 

0.0224 

0.1181 

0.0019 

0.0146 

0.0022 

0.0097 

m aSW j pu p *sw PR 

99 

99 

1.50 

2.00 

10 

10 
0.726 

0.1379 

0.359 

0.0151 

0.403 

0.0029 

We see that the Wagner-type codes can compete with the Reed code in high noise. 
As the noise decreases or m increases, the Reed code increases its advantage.    It is clear that 
for ordinary communication purposes, the Reed code would be better for long words than any of 
the previously considered codes if the restriction on the allowed values of m could be removed. 
Attempts are being made to modify the code to give a greater number of possible message lengths, 
but as yet no systematic multiple-error-correcting code suitable for an arbitrary number of mes- 
sage digits Has been found. 

11 
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E.     SUMMARY AND CONCLUSIONS 

We have considered the use of several types of binary codes in communication sys- 

tems, making the following assumptions: — 
(1) The system transmits sequences of binary digits known as words. If any 

digit is altered, the information carried by a word is lost. Thus, by definition, se- 
quences obtained by combining words are not themselves words. 

(2) The transmitted digits are one of two electrical signals of bandwidth W and 
duration T.    They have equal energies and equal a priori probabilities. 

(3) The entire coded word must be transmitted in a given time, regardless of 
the number of code digits required to check the message digits. (Assumption of con- 
stant data-rate.) 

(4) The transmitted digits are corrupted by the addition of white Gaussian noise. 
They are determined by choosing the larger of two independent and normally distributed 
correlator outputs.    The time-bandwidth product, TW, of the transmitted signals is »  1, 
so that when the signal length is changed to accommodate different numbers of check 
digits, the signal-to-noise ratio of the correlator difference voltage is proportional to 
the square root of the signal length.     (Actually, the signal-to-noise ratio is proportional 
to  N/TW, but we assume that W is not changed, an assumption that requires TW » 1.) 

By the best code (of those we consider) for a given word length and channel noise, we 

mean that for which the probability of error per word is smallest (under the assumption of con- 

stant data-rate).    We have considered the following systematic codes: - (1) the Hamming single- 

error-correcting code,  (2) the Wagner code, (3) the Hamming-Wagner code,  (4) the syllabified 

Wagner code, and (5) the Reed multiple-error-correcting codes.    (The Wagner,  Hamming-Wagner, 

and syllabified Wagner codes are introduced in this paper. )   For short words (m < about 15) we 

find that the Wagner code is best in the range of interest (neither too little nor too much noise). 

As m increases, the Wagner code is surpassed by both the Hamming-Wagner code and a syllab- 

ified Wagner code of two syllables.    For values of m < about 80, all syllabified Wagner codes are 

inferior to the Hamming-Wagner code.    For larger m, the conditional probability that double 

errors are corrected by the Hamming-Wagner code has fallen sufficiently so that a syllabified 

Wagner code is better.    Thus,  were it not for the Reed code (which is only applicable for a few 

word lengths), we could say that the Wagner code is best for short words, the Hamming-Wagner 

code for medium length and long words, and the syllabified Wagner code for very long words. 

However, the Reed code outperforms the Hamming-Wagner code at m = 42 and the syllabified 

Wagner code at m = 99 (except in excessively high noise).    Thus for large m there is no substi- 

tute for multiple-error-correcting codes that do not use the Wagner principle.    We can safely 

say that if the Reed code can be generalized to apply to any number of message digits, it will be 

the best code except for short words.    This assumes that the proportion of check to message 

digits turns out to be comparable to that of the present Reed code. 

The numerical work reported here was done by Mrs. Elizabeth Munro. 

*Tha Hamming code loryaiws the Wagner code for m about 20, but Is always Inferior to the Hamming- 
Wogner coda. 
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APPENDIX A 

The salient features of a geometrical model that is often useful as a visual aid in 

coding problems are given in the following discussion. This model has already been used to 

advantage by Hamming. 
The set of possible sequences of n binary digits can be represented by the unit cube 

in a space of n dimensions.   The sequences are the vertices of the cube, and the distance between 

two vertices is defined as the number of binary digits in which the corresponding sequences 

differ.    The set of all points at a distance <k from a given point is called the sphere of radius k 

about that point.   The volume of a sphere of radius k, defined as the number of points in the 

sphere, is 

k     „ 
Z    (?)      • 
i=0    1 

It can be seen that if we choose any set of mutually exclusive volumes in message 

space, designate one point in each volume as a possible transmitted message, and identify all 

other points in the volume with this point, we have constructed a model of an error-correcting 

code.    In particular, if the volumes are spheres of radius k, we have constructed a code that 

will correct any number of errors < k. 

If the message space is divided into spheres of radius one, we have the geometrical 

model of the Hamming single-error-correcting code.    Unless n is of the form 2   - 1, there are 

points that do not belong to any sphere.    (If n = 2   - 1, the space can be fully packed by I 

spheres of radius one and volume 2 .)   Points not in any sphere are said to be in limbo.    They 

represent messages that cannot become one of the set of possible transmitted messages by 

correction of only one digit.    For such a point, the Hamming parity checks call for a change in 

a digit whose order number is greater than the length of the sequence. 

Figure 2 illustrates a Hamming single-error-correcting code for a space of 

7=2   - 1 dimensions.    The cube has 128 vertices, and can be fully packed by 16 spheres of 

radius I and volume 8, the centers of which correspond to the 16 possible sequences of 4 binary 

digits.    The centers of the 16 spheres are circled.    Note that there are no points not in some 

sphere. 

Figure 3 illustrates the Hamming code for 6 (not of the form 2   - 1) dimensions. 

The centers of the 8 spheres are circled.    Note that there are 8 points not in any sphere.    These 

points (enclosed in squares) are the limbo.    The dotted outlines in Figs. 2 and 3 indicate typical 

spheres in each space. 

Double-error-correcting codes of dimension less than 90 must have a limbo.    For if 

such a code has no limbo, the volume V of the message sphere (of radius 2) must divide the 

volume 2    of the whole space.    Thus the equation 

V = 1 + n + (£) = j (n2 + n +  2) = 2k (A-l) 

must be satisfied for integral n and k.    By inspection, we find that the only solutions of Eq. (A-l) 

for n < 90 are n = 1, 2, and 5.    The first two values are meaningless, and the third is the trivial 
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two-error-correcting code consisting of the two points 00000 and 11111 (i.e., one message digit 

and four check digits). 

The geometrical model appropriate to the Hamming single-error-correcting, double- 

error-detecting code and the Hamming-Wagner code is obtained by adding an extra dimension to 

configurations such as those of Figs. 2 and 3.    This extra dimension corresponds to the extra 

check digit required to detect double errors.   Some errors involving three or more digits violate 

this extra parity check and some do not.   It is possible to calculate how many errors of each 

order violate the parity check and how many do not, but this is hardly worth while, since those 

that violate the check are indistinguishable from double errors and those that do not are indistin- 

guishable from single errors or no errors at all. 

Mr. Oliver Self ridge has helped greatly in preparing Appendix A. 

14 

UNCLASSIFIED 
\ 



UNCLASSIFIED 

Fig. 2.  Space of messages with 7 binary digits. 

0 CCNTRtS   OF    SPARES 

0  LlMCO UNIT    SPHCftCS 

Fig. 3.  Space of messages with 6 binary digits. 
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APPENDIX B 

The transition from Eq. (1-22) to Eq. (4) is derived in detail as follows.   Equation (I -22) 

can be written 

n-1  .  ,vn-j+l -   nn+l 

n"(o) = j= i     *T- # tti(o) + ^~ "In (a)    ' 
(B-l) 

where we define 

D^ajs |lj(«)sp(a)     . 

For n = 2 and n = 3, Eq. (B-l) reduces to 

n2(a)= |  [ijW-I^a)] 

and 

n3(a)= |[l1(a)-2I2(o) +I3(a)] 

We now prove by induction that 

(B-2) 

(B-3) 

nn(«)»-!i-   2    C-l)141^-.1)!.!*! (*) 
n 2n   i=l i-ii 

is valid for all n.    Note first that by Eqs. (B-2) and (B-3), Eq. (4) obtains for n = 1,  2, and 3. 

Assume that Eq. (4) obtains for all j $ n - 1.    Then 

n<«) * \ z1 s <-i)n+i-J j (")(j-J) i.(.) • <-nn+1 i ino 
n 2n j=l   i=l J   i-i    I 2n   n 

n-1 

2n   i=l 
S1 (-l)n+H(n:l)(J;|, 
j=i J 

,n+l   n IjCc) + (-1)"" -^ !„(«) ,n   n' 

Then,  it follows from the relation 

n-1 

j=i J"'    l~l l        j=i * l 

(";.1)nr"1 <-i)n-r(n;i) = (-i)l+1(l,;,1> 
r=0 

that 

(B-4) 

n   (a)= -"-   £    (-D^N^.Sljta)      , 
n 2n  1=1 i   '      l 

which completes the induction. 

It can be shown in just the same way that Eq. (7) implies Eq. (9). 

(4) 
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